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Instructions to candidates

	Do not open this examination paper until instructed to do so.
	Answer all the questions.
	Unless otherwise stated in the question, all numerical answers should be given exactly or 

correct to three significant figures.
	A graphic display calculator is required for this paper.
	A clean copy of the mathematics HL and further mathematics HL formula booklet is 

required for this paper.
	The maximum mark for this examination paper is [60 marks].
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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working.  For example, if 
graphs are used to find a solution, you should sketch these as part of your answer.  Where an answer 
is incorrect, some marks may be given for a correct method, provided this is shown by written working.  
You are therefore advised to show all working.

1.	 [Maximum mark:  5]

	 The function  f :  →   is defined as f x
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By considering limits, prove that  f  is

	 (a)	 continuous at  x = 0 ; [2]

	 (b)	 not differentiable at  x = 0 . [3]

2.	 [Maximum mark:  10]

Let  f (x) = ex sin x .

	 (a)	 Show that  f '' (x) = 2 (  f ' (x) − f (x)) . [4]

	 (b)	 By further differentiation of the result in part (a) , find the Maclaurin expansion of  f (x) , 
as far as the term in  x5 . [6]

3.	 [Maximum mark:  11]

	 (a)	 Prove by induction that  n! > 3n , for  n ≥ 7 , n ∈  . [5]

	 (b)	 Hence use the comparison test to prove that the series 
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4.	 [Maximum mark:  14]

Consider the function f x
x
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+
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1 2  , x ∈  .

	 (a)	 Illustrate graphically the inequality, 
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	 (b)	 Use the inequality in part (a) to find a lower and upper bound for  π . [5]

	 (c)	 Show that 
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	 (d)	 Hence show that  π 
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5.	 [Maximum mark:  20]

The curves  y = f (x)  and  y = g (x)  both pass through the point  (1 ,  0)  and are defined by the 

differential equations 
d
d
y
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x y= − 2  and 
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y x= − 2  respectively.

	 (a)	 Show that the tangent to the curve  y = f (x)  at the point  (1 ,  0)  is normal to the curve   
y = g (x)  at the point  (1 ,  0) . [2]

	 (b)	 Find  g (x) . [6]

	 (c)	 Use Euler’s method with steps of  0.2  to estimate  f (2)  to 5 decimal places. [5]

	 (d)	 Explain why  y = f (x)  cannot cross the isocline  x − y2 = 0 , for  x > 1 . [3]

	 (e)	 (i)	 Sketch the isoclines  x − y2 = −2 , 0 , 1 .

		  (ii)	 On the same set of axes, sketch the graph of  f . [4]


